中国癌光

SiO₂@Au 核壳结构纳米颗粒光热性质的有限元分析

张倩倩,陈斌*,邢林庄

西安交通大学动力工程多相流国家重点实验室,陕西 西安 710049

摘要 核壳结构纳米金颗粒的光学吸收特性好,在可见光至近红外波长范围内可灵活可调,在生物医学领域具有 良好的应用前景。本文建立了电磁场与固体传热耦合的多物理场有限元分析模型,针对血管性皮肤病的激光治 疗,研究了固定波长(585 nm 和 755 nm)下,SiO₂@Au纳米金壳单颗粒以及二聚体的结构参数(颗粒半径、金壳厚 度、颗粒间距)变化对颗粒光学性质以及传热特性的影响,得到了局部电场强度、系统温度场随结构参数的变化规 律,可为 SiO₂@Au 核壳型纳米颗粒在血管性皮肤病激光手术中的实际应用提供理论指导。

关键词 医用光学;核壳纳米颗粒;有限元分析;光学性质;传热特性;葡萄酒色斑;激光手术

中图分类号 R318.51; R758.5 文献标志码 A

doi: 10.3788/CJL202148.0907001

1 引 言

葡萄酒色斑(PWS)是一种先天性毛细血管扩 张疾病,主要存在于患者的面颈部,会严重影响患者 的身心健康。激光已成为葡萄酒色斑等血管性皮肤 病的标准疗法,其原理是基于 Anderson 和 Parrish 提出的选择性光热理论^[1]。根据该理论,激光皮肤 手术中通常采用波长为 585 nm/595 nm 的脉冲染 料激光(PDL)和波长为 755 nm 的翠绿宝石激光治 疗葡萄酒色斑,通过血红蛋白对激光能量的吸收来 损伤畸形血管,从而达到治愈的目的。然而,黄种人 表皮黑色素对脉冲染料激光的竞争性吸收导致难以 提高激光的能量,而翠绿宝石激光则同时面临受表 皮黑色素影响和血液吸收较弱的问题。因此,强化 血液对激光的吸收是提高 PWS 激光手术疗效的有 效途径。

纳米金颗粒作为无机光热剂的一种,具有更高 的光学稳定性和光热转换效率^[2]。在激光照射下, 当纳米金颗粒表面自由电子的振荡频率与入射光子 的本征频率相等时,两者会产生强烈的局域表面等 离子体共振(LSPR)效应^[3],该效应在微观上表现为 颗粒表面的近场电场增强和自由电子的强耦合吸 收^[4],在宏观上则表现为光谱的 LSPR 吸收峰^[5]。 强烈的局域表面等离子体效应可以增强纳米金颗粒 对激光能量的吸收,吸收的激光能量将以热能的形 式释放到周围环境中,因此将纳米颗粒作为光热剂 是强化血液吸收激光能量的有效途径。与固体纳米 金球颗粒有很大不同,由薄的金壳层和绝缘体内核 组成的核壳结构纳米金颗粒具有非常显著的光学特 性^[6]。金壳层内外表面都会发生局部表面等离子 体共振,有效增强了颗粒对电磁波的吸收。Averitt 等^[7]的研究表明,通过改变颗粒的核径比,等离子吸 收峰可以在可见光至近红外波长范围内自由调节。 纳米金壳颗粒的这些特性,不仅可以强化激光疗效, 还扩大了 PWS 等血管性皮肤疾病的治疗窗口。

目前,关于纳米金壳单颗粒和二聚体的结构参数对其光学特性的影响已有较多研究,例如:Jain 等^[8]通过 Mie 理论研究了 SiO₂@Au 核壳型纳米颗 粒的消光特性,结果表明,增加颗粒总尺寸或者增加 核壳比会导致共振吸收峰红移,吸收截面与颗粒总 尺寸成线性关系,与核壳比无关;Xu 等^[9]采用离散 偶极近似法分析了结构参数对 Au@Ag 型和 Au@ vacuum@Ag 型核壳纳米颗粒消光特性的影响,结 果发现,二者由于空腔效应产生了较强的电场耦合 效应,并且吸收截面随着空腔厚度的增加而增大;

收稿日期: 2020-08-26; 修回日期: 2020-10-04; 录用日期: 2020-11-05

基金项目:国家自然科学基金重大科研仪器研制项目(51727811)

^{*} E-mail: chenbin@ mail. xjtu. edu. cn

Khoury 等^[10] 通过 Mie 理论和有限元法研究了 SiO₂@Au型核壳纳米二聚体结构的颗粒半径、壳 厚度、球间距对消光光谱的影响;Li等^[11]采用时域 有限差分法开展研究后发现,对于 TiO₂@Ag核壳 纳米二聚体,随着颗粒间距减小,耦合偶极子的键合 模式和反键模式均使共振吸收峰发生红移。与此同 时,结构参数对纳米金壳单颗粒和二聚体光热性质 影响的研究并不多,部分研究情况如下:洪昕等^[12] 通过调整芯帽 SiO₂@Au 纳米颗粒结构,使温度场 发生了显著变化;Chen 等^[13] 通过有限元分析 (FEM)发现,SiO₂@Au 纳米单颗粒最内层的热功 率密度最大,温度随着层数的增加而逐渐升高。

鉴于金的稳定性以及其对光子的吸收高于其他 材料,研究人员通常选用金作为核壳纳米颗粒的表 面涂层,其内核为有机材料或者无机材料,根据需求 最终合成空心或实心结构。以SiO₂为内核、金为表 面涂层构成的SiO₂@Au纳米金壳与其他核壳结构 相比,制备技术更成熟,成本更低廉,而且可以大量 制备,还具有良好的生物亲和性。因此,本文基于有 限元分析,利用COMSOL软件通过多物理场耦合 研究以SiO₂为内核、金为表面涂层的SiO₂@Au纳 米金壳颗粒,分析壳厚、颗粒半径、颗粒间距等结构 参数对纳米金壳单颗粒以及二聚体结构光学性质和 传热特性的影响,以期为纳米金壳颗粒在血管性皮 肤病激光手术中的实际应用中提供理论指导。

2 模型与方法

光热效应的本质是颗粒吸收光能并以电阻热效 应的形式将光能转化为热能^[4]。为分析纳米金壳颗 粒与激光相互作用的传热特性,首先要研究颗粒在 等离子体共振下的光学特性。本文分别针对颗粒的 光学特性和传热特性,通过 COMSOL 自带的多物 理场耦合进行建模,在 λ =585 nm 和 λ =755 nm 的 条件下,从理论上研究结构参数变化对颗粒光学特 性和传热特性的影响。

2.1 电磁场计算

纳米金壳颗粒在激光作用下形成的电磁场是由 入射电磁场以及颗粒在入射电磁波作用下形成的散 射场的叠加。在入射电磁场作用下,颗粒表面的导 带自由电子振荡产生沿电场力方向的振荡电偶极 子,电子被驱动到纳米粒子的表面形成与入射光电 场方向相反的内电场。

通过求解单色平面波作用下 SiO₂ @ Au 核壳型 纳米颗粒的 Helmholtz 方程^[14],可以获得平面波介

导下纳米金壳颗粒的电场矢量解。在入射光照射下,纳米金壳颗粒内部的吸收热功率密度分布 Q_r为^[15]

$$Q_{\rm r} = \frac{1}{2} \varepsilon_{\rm 0} \omega \varepsilon'' | \boldsymbol{E} |^2, \qquad (1)$$

式中: ε。为真空介电常数; ε"为纳米金壳介电常数的 虚部; ω 为入射光频率; E 为电场强度。由(1)式可 见, 吸收热功率密度 Q, 的大小与电场强度的模值 成正相关。

2.2 温度场

在激光作用下,光子能量被导带电子吸收,发生 能量跃迁。光能通过电子间的相互作用被转换成热 能,再通过电子与晶格、晶格与周围环境的热交换, 使周围环境温度升高。

本文采用连续激光进行照射,将电磁波与纳米 颗粒相互作用过程中的吸收热功率密度 Q_r 作为热 源项,建立电磁场与固体导热的多物理场耦合模型, 求解球坐标系下三维稳态导热微分方程,研究结构 参数变化对纳米金壳颗粒内外温度场分布的影响。 纳米金壳颗粒内部以及周围环境的稳态导热微分方 程为

$$\begin{cases} \nabla \cdot (-K \ \nabla T) = Q_{\rm r}, & \text{inner} \\ \nabla \cdot (-K \ \nabla T) = 0, & \text{outer} \end{cases},$$
(2)

式中:K 为材料的热导率;T 为热力学温度。

只考虑厚度方向的热流传递,则金-水之间的第 三类热边界条件可以表示为

 $\nabla \cdot (-K \nabla T) = G(T_g - T_w),$ (3) 式中: T_g 为金壳内部的温升; T_w 为周围环境温度, 其值为 300 K;G 为边界热阻。设 K_g 和 K_w 分别为 金壳和水的热导率,设定假想热厚近似为边界厚 度^[16],设置边界热阻 G=105 MW/(m² · K)^[17]。

2.3 模型构建

采用有限元算法进行模型构建时,首先将计算 区域离散化,将无限自由度的问题转化为有限自由 度的问题。本文采用二次多项式组作为单元内电磁 场和温升场的基函数,根据单元内边界条件通过积 分求解得到二次多项式的系数矩阵,获得单元方程 组;然后将单元方程组集合起来,便可获得整个物理 场的方程式组。

如图 1 所示,电磁波沿 z 轴传播,沿 y 轴偏振, r 为纳米金壳颗粒的半径,r'为 SiO₂ 的内径,s 为金 壳厚度(s = r - r')。设置入射光的场强为 $I_{in} =$ 1 mW/ μ m²。对于二聚体,l 表示两个颗粒之间的 间距。本文采用四面体网格对物理域进行划分。对

and electromagnetic field. (a) Single nanoshell; (b) dimer

于 500~1200 nm 的可见光到近红外波段,计算可 知电磁波所能穿透纳米颗粒的最大深度为 12~ 16 nm,因此设置纳米金壳层的最大网格单元尺寸 为 6 nm,设置整个物理场的最大网格单元尺寸为波 长的 1/8。为了消除物理域外边界反射波对整个散 射场的影响,还需要设置完美匹配层,以吸收物理域 外围的反射波。完美匹配层中的网络采用 COMSOL自带的扫略网格方式按六面体进行5层 粗分。针对本文的不同算例,总网格数在25000~ 400000之间。

2.4 模型验证

通过置于水中的 SiO₂ @ Au 纳米金壳单颗粒在 波长为 665 nm 的平面波照射下的光热效应算例对上 述模型进行验证,其中入射光能量 $I_{in} = 2 \text{ mW}/\mu\text{m}^2$, 颗粒半径 r = 25 nm, s = 5 nm。计算得到的吸收峰位 置 λ_{max} 为 667 nm,峰值处的吸收截面为 23535 nm², 吸收功率为 47.07 μ W,颗粒内部温升 ΔT 的最大值 为 263 K。图 2 为本文的计算结果与 Chen 等^[13]计 算得到的吸收峰位置($\lambda_{max} = 665 \text{ nm}$)、峰值位置处 的吸收截面($\approx 23000 \text{ nm}^2$)、吸收功率 $P(\approx 46 \mu\text{W})$ 以及温升场分布(颗粒内部温升 $\Delta T \approx 262 \text{ K}$)的比 较,误差分别为 0.3%、2.4%、2.3%、0.15%,计算 结果吻合良好,证明了本文模型的正确性。

图 2 本文模拟计算结果与 Chen 等^[13]结果的对比。(a)吸收截面;(b)吸收功率;(c)温升场分布

Fig. 2 Comparison of calculation results between this paper and Chen et al^[13]. (a) Absorption cross-section; (b) absorbed power; (c) temperature-rise field distribution

3 固定波长下结构参数对颗粒光热 性质的影响

3.1 结构参数对单颗粒光热性质的影响

目前,临床上多采用波长为 585 nm 的脉冲染

料激光或 755 nm 的翠绿宝石激光治疗 PWS。因此,本节主要研究在固定波长下,颗粒半径 r(r在 25~45 nm 之间变化)和金壳厚度 s(s在 2~14 nm 之间变化)对单颗粒电场 $|E/E_0|$ 和温升场 ΔT 分布 的影响。

第48卷第9期/2021年5月/中国激光

对于 λ =585 nm 的入射激光,图 3 给出了单颗 粒电场强度最大值 | E/E_0 | max、温升最大值 ΔT max 随 r和s的变化规律。由图 3 可知,在固定的颗粒半 径r下, | E/E_0 | max 和 ΔT max 随壳厚s的变化规律基 本一致,而且存在一个最佳壳厚。该现象可作如下 解释:颗粒的吸收热功率密度 Q_r 取决于内部自由 电子的数量以及吸收平均自由程^[12]。当s较小时, 随着s增大,内部自由电子数量增加,吸收逐渐增 强;但是当s达到某一值之后,随着s的进一步增 大,吸收平均自由程增加的幅度高于自由电子增加 的幅度,而且金壳越厚,其内部杂化程度越弱^[18],因 此总的表现为吸收减弱。根据(1)式,颗粒的吸收热 功率密度 Q_r与局部电场强度呈正相关,除此之外, Q_r的变化等同于导热方程中热源的变化,因此温升 场的分布随之变化。在固定的金壳厚度 s 下,颗粒 半径的增加导致参与振荡的自由电子数目增加,但 同时相位延迟效应也是逐渐增加的^[19],因此有效自 由电子数目减少,吸收减弱。综上,在不同的金壳厚 度 s 下,存在不同的最佳颗粒半径。

当 λ =585 nm 时,单颗粒在 r=32.5 nm 和壳 厚 s=12 nm 条件下的 $|E/E_0|_{max}$ 和 ΔT_{max} 分别为 12.4 和 106.5 K。图 4 所示为单颗粒在上述尺寸下

图 3 颗粒半径 r 和壳厚 s 对 $|E/E_0|_{\text{max}}$ 和 ΔT_{max} 的影响($\lambda = 585 \text{ nm}$)。(a) 对 $|E/E_0|_{\text{max}}$ 的影响;(b) 对 ΔT_{max} 的影响 Fig. 3 Influences of particle radius r and shell thickness s on $|E/E_0|_{\text{max}}$ and $\Delta T_{\text{max}}(\lambda = 585 \text{ nm})$. (a) Effect on $|E/E_0|_{\text{max}}$; (b) effect on ΔT_{max}

图 4 r=32.5 nm, s=12 nm 时的 $|E/E_0|$ 分布和 ΔT 分布。(a) $|E/E_0|$ 分布;(b) ΔT 分布;(c) $|E/E_0|$ 沿 y 轴的分布; (d) ΔT 沿 y 轴的分布

Fig. 4 When r is 32.5 nm and s is 12 nm, electric field intensity $|E/E_0|$ and temperature-rise field ΔT distributions. (a) Electric field intensity distribution; (b) temperature-rise field distribution; (c) electric field intensity distribution along the y axis; (d) temperature-rise field distribution along the y axis

第48卷第9期/2021年5月/中国激光

的电场以及温升场分布图,其中图 4(a)、(b)分别是 $|E/E_0|$ 和 ΔT 的分布,图 4(c)、(d)分别为电场和温 升场沿 y 轴的分布。由图 4(a)可知,电场分布依赖 于电磁波的偏振方向,其表面最大值沿 y 轴分布, 金壳层内部的最大电场沿 x 轴分布,这主要是金壳 内外表面同性电荷电场叠加产生排斥的结果。由 图 4(c)可知, $|E/E_0|$ 在金壳层外表面达到最大,而 内部为零^[20]。由图 4(b)可知,温升场呈由内至外逐 渐减小的均匀环状分布,其原因在于颗粒尺寸为纳 米级,且金的热导率较大[为 139 W/(m•K)],导 致纳米金壳内部温升场的分布比较均匀,周围环境 温升呈反比例函数递减,如图 4(d)所示。

对于 λ =755 nm的入射激光,图 5 给出了单颗 粒局部电场强度最大值 | E/E_0 | max、温升最大值 ΔT_{max} 随 $r \ \pi s$ 的变化规律。由图 5 可知,单颗粒在 r=35 nm 和壳厚 s=5 nm 时获得了 $|E/E_0|_{\text{max}}$ 和 ΔT_{max} 。以往的研究结果表明^[6],随着核径比的增 加,等离子吸收峰会发生红移。与图 3 进行对比后 可知,对于 $\lambda = 755 \text{ nm}$ 的入射激光,当固定颗粒半 径时, $|E/E_0|_{\text{max}}$ 和 ΔT_{max} 集中在壳厚度比较小的区 域。在 r=35 nm 和壳厚 s=5 nm 的条件下, $|E/E_0|_{\text{max}}$ 和 ΔT_{max} 获得最大值 23.9 和 140.9 K, 分别是 585 nm 波长下相应值的 1.93 倍和 1.32 倍。 这可能是由于在 755 nm 激光对应的最佳结构下, 金壳厚度小且颗粒半径大,参与共振的有效自由电 子数目增加,导致 $|E/E_0|_{\text{max}}$ 较大幅度地增强;但温 升场的分布不仅与局部热源大小相关,还与颗粒粒 径、换热表面积大小相关,因此增幅较小。

图 5 颗粒半径 r 和壳厚 s 对 $|E/E_0|_{\max}$ 和 ΔT_{\max} 的影响(λ =755 nm)。(a)对 $|E/E_0|_{\max}$ 的影响;(b)对 ΔT_{\max} 的影响 Fig. 5 Influence of particle radius r and shell thickness s on $|E/E_0|_{\max}$ and $\Delta T_{\max}(\lambda$ =755 nm). (a) Effect on $|E/E_0|_{\max}$; (b) effect on ΔT_{\max}

3.2 颗粒间距 / 对二聚体光热性质的影响

在实际应用过程中,可以产生光热效应的是一 定浓度的多颗粒集群。不同于单颗粒,多颗粒由于 聚集效应,会出现许多不同于单颗粒的性质,例如随 着颗粒间距逐渐减小,其等离子吸收峰会发生明显 的红移^[5], $|E/E_0|$ 会产生更强的近场增强效果^[21], 会在两球中心处产生最大值,即"热点效应"。为了 更好地理解球间距对电场和温升场分布的影响,本 节以固定波长下单颗粒的最佳结构为起点,研究颗 粒间距 l 从 0 nm 变化至 100 nm 时对二聚体结构 电场和温升场的影响。

对于 λ = 585 nm 的入射激光,固定每个单颗粒 的 r = 32.5 nm 和 s = 12 nm,研究颗粒间距对局域 电场的影响,结果如图 6 所示。图 6(a)为相邻颗粒 间距 l = 0 nm 时的 $|E/E_0|$ 分布图,在此间距下获得 了最强电场,此时 $|E/E_0|_{max}$ = 389.6,电场最大值位 于两颗粒间隙的中心位置(y = 0 nm),如图 6(c)所 示。图 6(b)为相邻颗粒间距 l = 60 nm 时的 $|E/E_0|$ 分布图,可以看出,此时两个颗粒的电场分布几乎互 不影响,类似于图 4(a)中单颗粒的电场分布,此时 $|E/E_0|_{max} = 12.6$ 。图 6(d)为沿 y 轴的 $|E/E_0|$ 分 布图,其 $|E/E_0|_{max}$ 位于颗粒相互靠近的表面。

颗粒间距对温升场的影响如图 7 所示。图 7(a) 是颗粒间距 l = 0 nm 时的温升场分布图,可以看 出,颗粒内部温升分布均匀,而外部温升呈环状分 布;图 7(c)所示为颗粒间距 l = 0 nm 时,沿 y 轴的 温升场分布,由图可知颗粒内部的温升场分布不再 均匀,其最高温升 ΔT_{max} 位于两颗粒重叠处 (y=0 nm),此时的 ΔT 为 81.2 K。图 7(b)是颗粒 间距l = 60 nm 时的温升场分布见乎互不影响,与单 颗粒的温升场分布类似。图 7(d)所示为颗粒间距 l = 60 nm 时,沿 y 轴的温升场分布,由于相邻颗粒 表面的温升最高,环境介质的热导率较小,热传导过

图 6 颗粒间距 l 对局部电场 $|E/E_0|$ 的影响。(a) l = 0 nm 时的 $|E/E_0|$ 分布;(b) l = 60 nm 时 $|E/E_0|$ 分布;(c) l = 0 nm 时 $|E/E_0|$ 沿 y 轴的分布;(d) l = 60 nm 时 $|E/E_0|$ 沿 y 轴的分布

Fig. 6 Effect of interparticle distance l on $|\mathbf{E}/\mathbf{E}_0|$ of local electric field. (a) Electric field intensity distribution when l is 0 nm; (b) electric field intensity distribution when l is 60 nm; (c) electric field intensity distribution along the y axis when l is 0 nm; (d) electric field intensity distribution along the y axis when l is 60 nm; (d) electric field intensity distribution along the y axis when l is 60 nm; (d) electric field intensity distribution along the y axis when l is 60 nm

图 7 颗粒间距 l 对 ΔT 的影响。(a)l = 0 nm 时的 ΔT 分布;(b)l = 60 nm 时 ΔT 分布;(c)l = 0 nm 时 ΔT 沿 y 轴的分布; (d)l = 60 nm 时 ΔT 沿 y 轴的分布

Fig. 7 Effect of interparticle distance l on ΔT . (a) Temperature-rise field distribution when l is 0 nm; (b) temperature-rise field distribution along the y axis when l is 0 nm; (d) temperature-rise field distribution along the y axis when l is 0 nm;

第48卷第9期/2021年5月/中国激光

程导致环境介质的温升低于颗粒表面的温升,因此 在两颗粒之间会形成一个温升低谷,最高温升位于 颗粒内部。

图 8 所示为颗粒间距 l 对 $|E/E_0|_{max}$ 和 ΔT_{max} 的影响。从图 8(a)可以看出,电场强度的最大值 $|E/E_0|_{max}$ 随着颗粒间距的增大而迅速减小,当颗 粒间距约为 60 nm 后, $|E/E_0|_{max}$ 随颗粒间距增加 不再明显变化。图 8(b)是系统最大温升 ΔT_{max} 随颗 粒间距的变化关系,可以看出: ΔT_{max} 随類 粒间距的变化关系,可以看出: ΔT_{max} 随着颗粒间距 增大先迅速减小再迅速增加,在间距约为 60 nm 时 达到最大值;当颗粒间距大于 60 nm 后, ΔT_{max} 随间 距增加不再明显变化。该现象可作如下解释:在固定 的激光波长下,随着颗粒间距从零开始增加,电场耦 合效应减弱,因此, $|E/E_0|_{max}$ 急剧减小;当l>60 nm 时,颗粒的光学特性类似于单颗粒,因此 $|E/E_0|_{max}$ 几乎不再变化^[22]。对于 ΔT_{max} ,它并不随电场的变 化而变化,其值先减小后增加,随后稳定在106 K 附 近,在l=10 nm 时达到最小值 63.2 K,这是因为局 部温升是由热叠加效应和等离激元耦合效应共同导 致的^[23]。热耦合效应指纳米颗粒热传递引起的热 积累,等离激元耦合效应则是指由 LSPR 导致的吸 收增强效应。当l<10 nm 时,随着颗粒间距的增 加,局部电场强度急剧减小,致使吸收热功率密度减 小,而且,热耦合效应逐渐减弱,因此, ΔT_{max} 减小; 当l>10 nm 时,虽然 $|E/E_0|_{max}$ 减小,但单颗粒的等 离激元耦合效应逐渐增强,参与共振的有效自由电子 数目增加,因此系统的最大温升 ΔT_{max} 不断提高。 l>60 nm 时的温升分布类似于单颗粒,变得稳定。

Fig. 8 Influence of interparticle distance l on $|E/E_0|_{max}$ and ΔT_{max} . (a) Effect on $|E/E_0|_{max}$; (b) effect on ΔT_{max}

4 结 论

本文基于有限元分析法研究了固定激光波长 (λ =585 nm, λ =755 nm)下,结构参数变化对 SiO₂@Au核壳型纳米单颗粒以及二聚体结构光学 特性和传热特性的影响。

对于 SiO₂ @Au 纳米金壳单颗粒,当固定波长 为 λ = 585 nm 以及颗粒半径 r 一定时,随着金壳厚 度逐渐增加,单颗粒的电场强度最大值 | E/E_0 |_{max}、 温升最大值 ΔT_{max} 呈先增加后减小的趋势,而且,单 颗粒在 r = 32.5 nm 和壳厚 s = 12 nm 时获得电场 强度最大值和温升最大值, | E/E_0 |_{max} 和 ΔT_{max} 分别 为 12.4 和 106.5 K; 波长为 λ = 755 nm 时,单颗粒 在 r = 35 nm 和壳厚 s = 5 nm 时获得的 | E/E_0 |_{max} 和 ΔT_{max} 分别是 λ = 585 nm 时对应 1.93 倍和 1.32 倍。此外,对于 λ = 585 nm 的入射激光,当金壳厚度 较大时,颗粒的光热性能较好; 而对于 λ = 755 nm 的 入射激光,当金壳厚度较小时,颗粒的光热性质较好。 对于二聚体结构,以 $\lambda = 585$ nm 下单颗粒的最 佳尺寸为起点进行研究,结果发现,当颗粒间距*l*在 0~100 nm 范围内变化时,颗粒间距对二聚体的 $|E/E_0|_{max}$ 和 ΔT_{max} 产生了不同的影响:当颗粒间距 *l*<10 nm 时,随 *l* 增加, $|E/E_0|_{max}$ 急剧减小;当 *l*>60 nm 时,颗粒呈现类似于单纳米颗粒的光学特 性, $|E/E_0|_{max}$ 不再发生明显变化。而对于温升场, 当 *l*<10 nm 时, ΔT_{max} 减小;当 *l*>10 nm 时,系统 的最大温升 ΔT_{max} 不断提高;当 *l*>60 nm 时,温升 分布类似于单颗粒,变得稳定。

参考文献

- [1] Anderson R R, Parrish J A. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation[J]. Science, 1983, 220 (4596): 524-527.
- [2] Li Z, Qian W N, Wei S M, et al. Application of photothermal conversion nanomaterials in tumor photothermal therapy [J]. Laser & Optoelectronics

第48卷第9期/2021年5月/中国激光

研究论文

Progress, 2020, 57(17): 170005. 李治,千维娜,魏思敏,等.光热转换纳米材料在肿 瘤光热治疗中的应用[J].激光与光电子学进展, 2020, 57(17): 170005.

- [3] Takahata R, Yamazoe S, Koyasu K, et al. Surface plasmon resonance in gold ultrathin nanorods and nanowires [J]. Journal of the American Chemical Society, 2014, 136(24): 8489-8491.
- [4] Xiayili Y K P, Paerhatijiang T E S, Wu P P, et al. Optimization of light absorption and scattering properties of gold nanospheroids [J]. Acta Optica Sinica, 2020, 40(4): 0429001.
 夏伊丁•亚库普,帕尔哈提江•吐尔孙,武盼盼, 等. 金纳米旋转椭球的光吸收和散射特性优化[J]. 光学学报, 2020, 40(4): 0429001.
- [5] Zhang W C. Research on the photothermal properties of metal nanoparticles [D]. Hangzhou: Zhejiang University, 2014.
 张位春.金属纳米颗粒光热性质研究[D].杭州:浙 江大学, 2014.
- [6] Halas N. The optical properties of nanoshells [J]. Optics and Photonics News, 2002, 13(8): 26-30.
- [7] Averitt R D, Sarkar D, Halas N J, et al. Plasmon resonance shifts of Au-coated Au₂S nanoshells: insight into multicomponent nanoparticle growth[J]. Physical Review Letters, 1997, 78(22): 4217.
- [8] Jain P K, Lee K S, Sayed M A E, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine [J]. The Journal of Physical Chemistry B, 2006, 110(14): 7238-7248.
- [9] Xu X B, Yi Z, Li X B, et al. Discrete dipole approximation simulation of the surface plasmon resonance of core/shell nanostructure and the study of resonance cavity effect [J]. The Journal of Physical Chemistry C, 2012, 116(45): 24046-24053.
- [10] Khoury C G, Norton S J, Dinh T V, et al. Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method[J]. ACS Nano, 2009, 3(9): 2776-2788.
- [11] Li Q S, Zhang Z L. Bonding and anti-bonding modes of plasmon coupling effects in TiO₂-Ag core-shell dimers[J]. Scientific Reports, 2016, 6: 19433.
- [12] Hong X, Wang C C, Liu J T, et al. Photothermal properties of core-capped gold nanoparticles[J]. Acta

Physica Sinica, 2018, 67(19): 195202. 洪昕,王晨晨,刘江涛,等.芯帽纳米颗粒的光热性 质[J].物理学报, 2018, 67(19): 195202.

- [13] Chen M J, He Y R, Hu Y W, et al. Local heating control of plasmonic nanoparticles for different incident lights and nanoparticles [J]. Plasmonics, 2019, 14(6): 1893-1902.
- [14] Zhao J, Pinchuk A O, McMahon J M, et al. Methods for describing the electromagnetic properties of silver and gold nanoparticles [J]. Accounts of Chemical Research, 2008, 41(12): 1710-1720.
- [15] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370.
- [16] Chen X, Chen Y T, Yan M, et al. Nanosecond photothermal effects in plasmonic nanostructures[J]. ACS Nano, 2012, 6(3): 2550-2557.
- Plech A, Kotaidis V, Grésillon S, et al. Laserinduced heating and melting of gold nanoparticles studied by time-resolved X-ray scattering [J]. Physical Review B, 2004, 70(19): 195423.
- [18] Yu F, Yao D F, Qian W P, et al. Reflectometry interference spectroscopy in detection of hepatitis B surface antigen [J]. Clinical Chemistry, 2000, 46 (9): 1489-1490.
- [19] Westcott S L, Halas N J. Electron relaxation dynamics in semicontinuous metal films on nanoparticle surfaces [J]. Chemical Physics Letters, 2002, 356(3/4): 207-213.
- [20] Hao E C, Li S Y, Bailey R C, et al. Optical properties of metal nanoshells [J]. The Journal of Physical Chemistry B, 2004, 108(4): 1224-1229.
- [21] Xin K, Shi X F, Zhang X, et al. Aggregation of gold nanoparticles based on photothermal effect and its application insurface-enhanced Raman scattering [J]. Acta Optica Sinica, 2020, 40(19): 1930001.
 辛坤, 史晓凤, 张旭, 等. 基于光热效应实现金纳米 粒子的聚集及其 SERS 应用[J].光学学报, 2020, 40 (19): 1930001.
- [22] Genov D A, Sarychev A K, Shalaev V M, et al. Resonant field enhancements from metal nanoparticle arrays[J]. Nano Letters, 2004, 4(1): 153-158.
- [23] Siahpoush V, Kandjani S A, Nikniazi A, et al. Effect of plasmonic coupling on photothermal behavior of random nanoparticles [J]. Optics Communications, 2018, 420: 52-58.

Finite Element Analysis of Photothermal Properties of SiO₂@Au Core-Shell Nanoparticle

Zhang Qianqian, Chen Bin^{*}, Xing Linzhuang State Key Laboratory of Multiphase Flow and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China

Abstract

Objective Port wine stain is a congenital skin disease mainly in the face and neck, which seriously affects the physical and mental health of patients. aiming to thermally damage the malformed capillaries through laser energy absorption by hemoglobin, pulse dye laser and alexandrite laser with wavelengths of 585/595 and 755 nm, respectively, are used to treat port wine stains clinically. However, there is competitive absorption of laser energy between epidermal melanin and dermal hemoglobin, which limits the increase of laser energy with a wavelength of 585/595 nm and the alexandrite laser with 755 nm for Asians. The core-shell Au nanoparticle (NP) can be used to enhance the laser energy absorption by blood due to its adjustable absorption peak to a specific wavelength by changing its structural parameters and distinctive photothermal absorption. In this work, the effects of the structural parameters (particle radius, the thickness of the gold shell, and interparticle distance) on the photothermal properties of a single particle and the dimer were studied theoretically under 585 nm and 755 nm wavelengths, which could provide theoretical guidance in the laser surgery of vascular dermatosis in a clinic.

Methods The core-shell Au NP is immersed in water for nanoscale heating. The simulation calculations of the electromagnetic field propagation and the heat transfer among different media are resolved by the finite element method (FEM). For the electromagnetic simulation, first, the basic properties of each domain, including the perfectly matched layer (PML) and scattering boundary condition, are strictly defined. Then, the properties of the electromagnetic waves in the domain are set, including the incident direction and intensity. The electric field vector solution of the core-shell NPs mediated by the plane wave is obtained by solving the Helmholtz equation of SiO₂ @Au core-shell NP. Based on the solved electric field vector solution, we could analyze the influence of structural parameter changes on the local electric field distribution. The light energy absorbed by NPs was converted into heat energy by the Joule heating effect. For the heat transfer simulation, by solving the three-dimensional steady-state heat conduction equation with the heat source supplied by light energy absorption under the third thermal boundary condition, we could obtain the effect of structural parameter changes on the temperature-rise distribution. Before calculation, the solved domains are meshed.

Results and Discussions For the single NP, when the particle radius r is constant under $\lambda = 585$ nm, with an increase in the thickness of the Au shell s, the maximum electric field intensity $|E/E_0|_{max}$ and the temperature-rise $\Delta T_{\rm max}$, which are mainly affected by the number of internal free electrons and the average-free path, increase first and then decrease (Fig. 3); When the thickness of Au shell s is constant under $\lambda = 585$ nm, as particle radius r increases, $|E/E_0|_{\text{max}}$ and ΔT_{max} —which is mainly affected by the phase delay effect and the number of effective free electrons—have no obvious regular pattern. Meanwhile, for $\lambda = 585$ nm, when r = 32.5 nm, s = 12 nm, $|E/E_0|_{\text{max}}$ and ΔT_{max} are 12.4 and 106.5 K, respectively. For $\lambda = 755$ nm, when r = 35 nm, s = 5 nm, $|E/E_0|_{\text{max}}$ and ΔT_{max} are 1.93 and 1.32 times of the corresponding value of the λ = 585 nm case, respectively (Fig. 5). In addition, compared with the corresponding value of the $\lambda = 585$ nm case, when the thickness of the Au shell is thinner, the photothermal properties of the particle are better. The effects of interparticle distance l = 0-100 nm on the electric field intensity $|E/E_0|$ and temperature-rise field ΔT distribution of the dimer are studied when $\lambda = 585$ nm (setting each single particle as follows: r = 32.5 nm, s = 12 nm). When l = 0 nm, $|E/E_0|_{\text{max}}$ and ΔT_{max} are in the central point, whereas for l = 60 nm, $|E/E_0|_{\text{max}}$ and ΔT_{max} are in a single particle surface and interior, respectively (Figs. 6 and 7). Besides, l has different effects on $|\mathbf{E}/\mathbf{E}_0|_{\text{max}}$ and ΔT_{max} of the dimer. When $l \leq 10 \text{ nm}$, $|\mathbf{E}/\mathbf{E}_0|_{\text{max}}$ decreases sharply with the increase in l. When l > 60 nm, as the optical properties of the dimer are similar to that of single NPs, $|E/E_0|_{\text{max}}$ stops changing. For the temperature-rise field, when $l \leq 10$ nm, owing to the decrease of the thermal coupling effect and the local electric field intensity $|E/E_0|_{max}$ with the increase in l, the absorption thermal power density Q_r and ΔT_{max} decrease rapidly. When l > 10 nm, although $|E/E_0|_{max}$ decreases, the isobaric

coupling effect of a single particle increases gradually, so ΔT_{max} increases continuously. When l > 60 nm, the temperature-rise distribution is similar to that of a single particle and becomes stable (Fig. 8).

Conclusions For a single core-shell Au NP, when the particle radius r is fixed under $\lambda = 585$ nm, as the thickness of the gold shell increases, $|\mathbf{E}/\mathbf{E}_0|_{\max}$ and ΔT_{\max} increase first and then decrease. In addition, for $\lambda = 585$ nm, when r = 32.5 nm and s = 12 nm, $|\mathbf{E}/\mathbf{E}_0|_{\max}$ and ΔT_{\max} are 12.4 and 106.5 K, respectively. For $\lambda = 755$ nm, when r = 35 nm and s = 5 nm, $|\mathbf{E}/\mathbf{E}_0|_{\max}$ and ΔT_{\max} are 1.93 and 1.32 times of the corresponding value of the $\lambda = 585$ nm case, respectively. Besides, compared to the corresponding value of the $\lambda = 585$ nm case, when the shell thickness is thinner, the photothermal properties of the particle are better. While for the dimer, l has different effects on $|\mathbf{E}/\mathbf{E}_0|_{\max}$ and ΔT_{\max} ; when l < 10 nm, $|\mathbf{E}/\mathbf{E}_0|_{\max}$ and ΔT_{\max} decrease, while for l > 10 nm, although $|\mathbf{E}/\mathbf{E}_0|_{\max}$ decreases, ΔT_{\max} increases continuously and finally becomes stable.

Key words medical optics; core-shell nanoparticle; finite element method; optical properties; heat transfer properties; port wine stain; laser surgery

OCIS codes 160.4236; 170.1610; 170.1870; 350.4990